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Some facts about renewal processes

Let 7 and 7;’s be independent and identically distributed

inter-renewal times with mean p and finite variance o2,

define Sy, :=> ", 7 and Sy = 2?21 7 =0
Let N(t) be the number of renewals up to time ¢, that is,

N(t) =max{n: S, <t < Spt1},

EN(t) ~ L and Var(N(t)) ~ % as t — oo
— Feller (1968), Vol 1, pp. 340-341; Vol. 2, p. 372.

Wi(t) .= ]:7/(22_7;;? is approximated by a standard normal

distribution.

Question: how fast?



Who cares?

e Renewal theory is one of indispensable topics in

introductory courses of random processes.

e The behaviour of regenerative events is of significant

interest in probability theory and related areas.

[Slide 3]



Speed of convergence?

e For the Kolmogorov distance, it must be easy!

P(N(t) >n)=P(S, <t).

— S, ~ N(np,no?).

— Most likely values of N(t) are within a few standard

deviations of the mean, but the approximate normal is
N (z ﬁ)
props )

— Do you still think it is easy?
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Literature?

e Englund (1980):

PN(t) < n) — ® <(”“;\2\/ﬁ> ‘ <4 (1)3 &

sup
n

where v° = E(|7 — p|?).
~ B (W‘”ﬁ) — P(X; < n), with X; ~ N(t/u, to®/u3).

oVt

— dx(Q1,Q2) := sup,er [Q1(—00, u] — Q2(—00,ul|.
— Under the Kol. distance, it is done!

— Can someone use Stein’s method to prove this bound?
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More on literature

e Omey and Vesilo (2011): suppose the characteristic

function of 7 is integrable, then

a\/n t—nu)‘
sup | —P(N({t)=n+1) — P = o(1).
i | YRRV =0+ 1) - ()| — o)
Moreover, if 7 has finite third moment, then
t_
sup | Y BN (1) =1+ 1) — @ ( ”“)‘ —0 (n—1/2) .
t | o\/n

e P(N(t) € A) for any set A C Z,7 Discretised normal?
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Metrics?

How about the probabilities of values in any set?

e Total variation distance: for any probability measures ()
and ()2 on Z := {0, +1,4+2,...},

drv(Q1,Q2) := sup |Q1(A) — Q2(4)].

AcCZ

e The Wasserstein distance: ()1 and ()2 on R

[ i~ [ raqs

where fLip(l) — {f :R—R: ‘f(:l?) - f(y)‘ <
|z — y| for all z,y € R}.

dw(®@1,Q2) =  sup
JEFLip(1)

)
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By handwaving: it should work!
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“I think you should be more explicit here in step two.”

e The cartoon is by Sidney Harris
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How to do 1t?

e Characteristic functions: Englund (1980) uses
— Berry—Esseen theorem for iid random variables,

— Some technical adjustment to estimate the gaps
amongst various normal distributions with different

parameters.

e Coupling: challenging!

— yet to see one bound using pure coupling but with the

right order.

e Stein’s method

— No such work, have asked various people, from old to

young!
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Likely approximate distributions

N (t) is non-negative integer-valued, so if we consider
dTv, the approximate distribution must be non-negative

integer-valued.
If 7 ~ exp, then N(t) is Poisson (fixed point).

If we use discretised normal, under what conditions can

we get N(t) ~ discretised normal for moderate ¢7

Poisson(\) is close to normal when A\ is large.



Poisson is not enough!

e mean=variance, lack of flexibility.

e In general, for a > 0 and an integer b, a translated
Poisson distribution is defined as P, := Pn(a) * d
(Rollin (2007)).

— It N is close to a normal distribution, then it must be

close to a translated Poisson distribution.

— Suitable in the total variation distance so for all

possible sets rather than intervals of the form (—oo, x|.
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Discretized normal

e N%a+b,a) (Fang (2014)): having probability mass

function at integer z € Z as

21 (e(at0)?
/ e 2¢2  dzx.
:—1/2 V2Ta

— Discretised normal can do the same job.

— It does not offer the same interpretation as a

translated Poisson.
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Discrete CLT around N(t)

e Under the Kolmogorov distance, yes!

e Under dry: NO discrete CLT for N (t)!
— IfP(r=1)=P(r =3) =1/2, then

lim inf min dpv (L (N(t)), Pap) > 0.

t—00 a,b

— Under what conditions can we have discrete CLT for
N(t)?
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The speed: dw
Let a = to?/p? and b = Lﬁ(l - Z—Z)j, where |y| denotes the
integer part of y. If E(7%) < oo, then

dw (N (t), Pa,b) = 0(1).

o If we standardise, then dy is of order O(t~/2), hence
Peccati, Solé, Taqqu & Utzet (2010) ensures

] (N(t)—EN(t)
U\ VVar(V (D)

L N(0, 1)) = O(t™1/?).
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The speed: drv

e The Lebesgue decomposition theorem: for any

distribution function G on R can be represented as
G =(1—-ag)Gs+ agGy.

e A distribution function G on R is said to be non-singular
if ag > 0.
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The speed: drv (cont)

e a and b are as above. Assume E(73) < co. Either of the

following conditions ensures
drv(N(t), Pyy) = O (t—1/2) .

- 0< F(0) < 1.
— F' is non-singular.

— F' is singular with supp(F') N{c,2¢,3¢,...} # 0 and
drv(T, 7+ ¢) < 1.
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The Stein-Chen method

o X ~Pn(N)iff P(X +1=k)="PE=H 1z, iff
E[Ag(X +1) — Xg(X)] =0 for a suitable class of g.

e Stein’s identity for Pn(\):

Ag(i+1) —ig(i) = f(i) — Pn(A)(f)
for all suitable functions f.
— Pn(\)(f) = Ef(X) with X ~ Pn(\).

— By solving the equation recursively, g can be written

in terms of f.
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Stein’s identity for F,,
Set g(i) = 0 for ¢ < —1 and write Stein’s identity
Ag(i —=b+1) = (1 = b)g(i = b) = f(i = b) — Pn(a)(f)
for all suitable functions f.
e There is a truncation problem at around 7z = —1.
e Write g(j) := g(j — b) so that

Ag(i+1) = (i = b)g(i) = f(i = b) — Pn(a)(f).

e Consider the stationary case N first: the first renewal

needs adjustment.
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Difficulty? a quick run of the proof

e By the Stein’s identity for P, p:

Ef(N(t) —b) — Pn(a)(f)
aBg(N(t) +1) + bEg(N (1)) — E[g(N (2))N (¢)]

Y
Y

— Need to work on E[g(N (t))N (t)].

[Slide 19]



From size biasing to Palm

e For a nonnegative integer-valued random variable X
having positive finite mean u, we consider h(-) = dgp1 (),

then
Elh(X)X] EkP(X =k)

EX L4 ’

giving size biased distribution
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From size biasing to Palm — cont

e X* L X 11iff X ~ Pn(u): the Stein-Chen method for

Poisson approximation.

e Size biasing appears in various sampling contexts, e.g., in
random digit dialing, it is proportionally more likely to
dial households with more telephones than households

with fewer phones.

e Size biasing of N () does not offer enough information.
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From size biasing to Palm — cont

e We can expand
EGN(E)N(8)] = E /O GN ()N (dev).

e It is possible to consider Radon-Nikodym derivative

E[gN (t))N (dov)]
E[NV (dav)]

— Na(t) is called a Palm process of N at «, its

distribution is called the Palm distribution.

=: Eg(NL(1)).

— Fact: Palm distribution is the process version of size

biasing.
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The Palm for renewal process

e The Palm process at a: given there is a renewal at «,

how the remaining part of the renewal process looks like?

o If \ is a Poisson process, then N, N + 0n: ONE

additional observer at «, the rest is the same.
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A quick run of the proof: cont
o Since EN(da) = %2, we have
Ef(NV(t) —b) — Pn(a)(f)
GEGN(E) + 1) + VEGIN(®) ~ E | GN(D)N(da)

0

~

Q

_ aE§(N(t)+1)+bE§(N(t))—% /0 EG(N (1)) da

_ aEAg<N<t>>+<a+b>Eg<N<t>>—% [ EgNa(t)do
~ aEAGN() — — / E[GN (1) — 5N (0))]da
HJo

— A is the forward difference operator and a + b ~ t/pu,
— N, is the Palm process of N at «.



A coupling that works!
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Still unsatisfactory!

Main difficulty in dpy: drv(N(t), Pap) has the same
speed as dpy (N (t), N(t) + 1).

What is drv(N(t), N(t) +1)?
If P(r =1) =P(r =3) =1/2, then

lim inf dpy (N (£), N(£) 4 1) > 1/ e 80 73),

t—00 QKT

Most regenerative events in Markov processes (both

continuous and discrete time) have
drv(N(t), Pay) = O(t71/2).



Problems for further consideration

e If supp(F’) contains an interval, then

dTV( (t 7 ) == O(t_l/Q).

N(t), Pyp
° dTv(N(t), Pa,b) = 0(1) ift dTv(N(t), Pa,b) = O(t_1/2).
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Take home messages

For the distribution of the number of renewals approximated

by a suitable translated Poisson (or discretized normal):
o di: order O(t71/2),
o dw: O(1),
o dryv: O(t71/2) in most cases,

e the constants are too big and complicated.
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Thank youl
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