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Some facts about renewal processes

• Let τ and τi’s be independent and identically distributed

inter-renewal times with mean µ and finite variance σ2,

define Sn :=
∑n

i=1 τi and S0 =
∑0

i=1 τi := 0

• Let N(t) be the number of renewals up to time t, that is,

N(t) = max {n : Sn ≤ t < Sn+1} ,

• EN(t) ∼ t
µ and Var(N(t)) ∼ tσ2

µ3
as t→∞

– Feller (1968), Vol 1, pp. 340–341; Vol. 2, p. 372.

• W (t) := N(t)−t/µ√
tσ2/µ3

is approximated by a standard normal

distribution.

• Question: how fast?
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Who cares?

• Renewal theory is one of indispensable topics in

introductory courses of random processes.

• The behaviour of regenerative events is of significant

interest in probability theory and related areas.
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Speed of convergence?

• For the Kolmogorov distance, it must be easy!

P(N(t) ≥ n) = P(Sn ≤ t).

– Sn ∼ N(nµ, nσ2).

– Most likely values of N(t) are within a few standard

deviations of the mean, but the approximate normal is

N
(
t
µ ,

tσ2

µ3

)
.

– Do you still think it is easy?
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Literature?

• Englund (1980):

sup
n

∣∣∣∣P(N(t) < n)− Φ

(
(nµ− t)√µ

σ
√
t

)∣∣∣∣ ≤ 4
(γ
σ

)3√µ

t
,

where γ3 = E(|τ − µ|3).

– Φ
(
(nµ−t)√µ

σ
√
t

)
= P(Xt < n), with Xt ∼ N(t/µ, tσ2/µ3).

– dK(Q1, Q2) := supu∈R |Q1(−∞, u]−Q2(−∞, u]| .

– Under the Kol. distance, it is done!

– Can someone use Stein’s method to prove this bound?

[Slide 5]



More on literature

• Omey and Vesilo (2011): suppose the characteristic

function of τ is integrable, then

sup
t

∣∣∣∣σ√nµ P(N(t) = n+ 1)− Φ

(
t− nµ
σ
√
n

)∣∣∣∣ = o(1).

Moreover, if τ has finite third moment, then

sup
t

∣∣∣∣σ√nµ P(N(t) = n+ 1)− Φ

(
t− nµ
σ
√
n

)∣∣∣∣ = O
(
n−1/2

)
.

• P(N(t) ∈ A) for any set A ⊂ Z+? Discretised normal?
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Metrics?

How about the probabilities of values in any set?

• Total variation distance: for any probability measures Q1

and Q2 on Z := {0,±1,±2, . . . },

dTV(Q1, Q2) := sup
A⊂Z
|Q1(A)−Q2(A)|.

• The Wasserstein distance: Q1 and Q2 on R

dW(Q1, Q2) := sup
f∈FLip(1)

∣∣∣∣∫ fdQ1 −
∫
fdQ2

∣∣∣∣ ,
where FLip(1) = {f : R 7→ R : |f(x)− f(y)| ≤
|x− y| for all x, y ∈ R}.
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By handwaving: it should work!

• The cartoon is by Sidney Harris
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How to do it?

• Characteristic functions: Englund (1980) uses

– Berry–Esseen theorem for iid random variables,

– Some technical adjustment to estimate the gaps

amongst various normal distributions with different

parameters.

• Coupling: challenging!

– yet to see one bound using pure coupling but with the

right order.

• Stein’s method

– No such work, have asked various people, from old to

young!
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Likely approximate distributions

• N(t) is non-negative integer-valued, so if we consider

dTV, the approximate distribution must be non-negative

integer-valued.

• If τ ∼ exp, then N(t) is Poisson (fixed point).

• If we use discretised normal, under what conditions can

we get N(t) ∼ discretised normal for moderate t?

• Poisson(λ) is close to normal when λ is large.
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Poisson is not enough!

• mean=variance, lack of flexibility.

• In general, for a > 0 and an integer b, a translated

Poisson distribution is defined as Pa,b := Pn(a) ∗ δb
(Röllin (2007)).

– If N is close to a normal distribution, then it must be

close to a translated Poisson distribution.

– Suitable in the total variation distance so for all

possible sets rather than intervals of the form (−∞, x].
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Discretized normal

• Nd(a+ b, a) (Fang (2014)): having probability mass

function at integer z ∈ Z as∫ z+1/2

z−1/2

1√
2πa

e−
(x−(a+b))2

2a2 dx.

– Discretised normal can do the same job.

– It does not offer the same interpretation as a

translated Poisson.
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Discrete CLT around N(t)

• Under the Kolmogorov distance, yes!

• Under dTV: NO discrete CLT for N(t)!

– If P(τ = 1) = P(τ = 3) = 1/2, then

lim inf
t→∞

min
a,b

dTV(L (N(t)), Pa,b) > 0.

– Under what conditions can we have discrete CLT for

N(t)?
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The speed: dW

Let a = tσ2/µ3 and b = b tµ(1− σ2

µ2
)c, where byc denotes the

integer part of y. If E(τ3) <∞, then

dW(N(t), Pa,b) = O(1).

• If we standardise, then dW is of order O(t−1/2), hence

Peccati, Solé, Taqqu & Utzet (2010) ensures

dW

(
N(t)− EN(t)√

Var(N(t))
, N(0, 1)

)
= O(t−1/2).
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The speed: dTV

• The Lebesgue decomposition theorem: for any

distribution function G on R can be represented as

G = (1− αG)Gs + αGGa.

• A distribution function G on R is said to be non-singular

if αG > 0.
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The speed: dTV (cont)

• a and b are as above. Assume E(τ3) <∞. Either of the

following conditions ensures

dTV(N(t), Pa,b) = O
(
t−1/2

)
.

– 0 < F (0) < 1.

– F is non-singular.

– F is singular with supp(F ) ∩ {c, 2c, 3c, . . . } 6= ∅ and

dTV(τ, τ + c) < 1.
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The Stein-Chen method

• X ∼ Pn(λ) iff P(X + 1 = k) = kP(X=k)
λ , k ∈ Z+ iff

E[λg(X + 1)−Xg(X)] = 0 for a suitable class of g.

• Stein’s identity for Pn(λ):

λg(i+ 1)− ig(i) = f(i)− Pn(λ)(f)

for all suitable functions f .

– Pn(λ)(f) = Ef(X) with X ∼ Pn(λ).

– By solving the equation recursively, g can be written

in terms of f .

[Slide 17]



Stein’s identity for Pa,b

Set g(i) = 0 for i ≤ −1 and write Stein’s identity

λg(i− b+ 1)− (i− b)g(i− b) = f(i− b)− Pn(a)(f)

for all suitable functions f .

• There is a truncation problem at around i = −1.

• Write g̃(j) := g(j − b) so that

λg̃(i+ 1)− (i− b)g̃(i) ≈ f(i− b)− Pn(a)(f).

• Consider the stationary case N first: the first renewal

needs adjustment.
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Difficulty? a quick run of the proof

• By the Stein’s identity for Pa,b:

Ef(N (t)− b)− Pn(a)(f)

≈ aEg̃(N (t) + 1) + bEg̃(N (t))− E[g̃(N (t))N (t)]

– Need to work on E[g̃(N (t))N (t)].

[Slide 19]



From size biasing to Palm

• For a nonnegative integer-valued random variable X

having positive finite mean µ, we consider h(·) = δ{k}(·),
then

E[h(X)X]

EX
=
kP(X = k)

µ
,

giving size biased distribution

P(Xs = k) =
kP(X = k)

µ
.
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From size biasing to Palm – cont

• Xs d
= X + 1 iff X ∼ Pn(µ): the Stein-Chen method for

Poisson approximation.

• Size biasing appears in various sampling contexts, e.g., in

random digit dialing, it is proportionally more likely to

dial households with more telephones than households

with fewer phones.

• Size biasing of N (t) does not offer enough information.
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From size biasing to Palm – cont

• We can expand

E[g̃(N (t))N (t)] = E
∫ t

0
g̃(N (t))N (dα).

• It is possible to consider Radon-Nikodym derivative

E[g̃(N (t))N (dα)]

E[N (dα)]
=: Eg̃(Nα(t)).

– Nα(t) is called a Palm process of N at α, its

distribution is called the Palm distribution.

– Fact: Palm distribution is the process version of size

biasing.
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The Palm for renewal process

• The Palm process at α: given there is a renewal at α,

how the remaining part of the renewal process looks like?

• If N is a Poisson process, then Nα
d
= N + δα: one

additional observer at α, the rest is the same.
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A quick run of the proof: cont

• Since EN (dα) = dα
µ , we have

Ef(N (t)− b)− Pn(a)(f)

≈ aEg̃(N (t) + 1) + bEg̃(N (t))− E
∫ t

0
g̃(N (t))N (dα)

= aEg̃(N (t) + 1) + bEg̃(N (t))− 1

µ

∫ t

0
Eg̃(Nα(t))dα

= aE∆g̃(N (t)) + (a+ b)Eg̃(N (t))− 1

µ

∫ t

0
Eg̃(Nα(t))dα

≈ aE∆g̃(N (t))− 1

µ

∫ t

0
E[g̃(Nα(t))− g̃(N (t))]dα,

– ∆ is the forward difference operator and a+ b ≈ t/µ,

– Nα is the Palm process of N at α.
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A coupling that works!
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Still unsatisfactory!

• Main difficulty in dTV: dTV(N(t), Pa,b) has the same

speed as dTV(N(t), N(t) + 1).

• What is dTV(N(t), N(t) + 1)?

• If P(τ = 1) = P(τ = 3) = 1/2, then

lim inf
t→∞

dTV(N(t), N(t) + 1) ≥
√

3

8π
e−8+O(t−1/2).

• Most regenerative events in Markov processes (both

continuous and discrete time) have

dTV(N(t), Pa,b) = O(t−1/2).
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Problems for further consideration

• If supp(F ) contains an interval, then

dTV(N(t), Pa,b) = O(t−1/2).

• dTV(N(t), Pa,b) = o(1) iff dTV(N(t), Pa,b) = O(t−1/2).
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Take home messages

For the distribution of the number of renewals approximated

by a suitable translated Poisson (or discretized normal):

• dK: order O(t−1/2),

• dW: O(1),

• dTV: O(t−1/2) in most cases,

• the constants are too big and complicated.
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Thank you!
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